Ian Char

6105 Gates Center, 5000 Forbes Ave. Pittsburgh, PA 15213 ianchar.com ichar@cs.cmu.edu

RESEARCH INTERESTS My main research interests are focused around deep reinforcement learning, decision making under uncertainty, and uncertainty quantification. I am particularly interested in developing algorithms for engineering and the sciences.

EDUCATION

Carnegie Mellon University, Pittsburgh, PA, United States

Ph.D. in Machine Learning

August 2018 - Present

Advisor: Jeff Schneider

University of Colorado Boulder, Boulder, CO, United States

M.S./B.S. in Applied Math and B.S. in Computer Science August 2013 - May 2018

Advisor: Manuel Lladser

UGRD GPA: 4.00, GRAD GPA: 3.88

RESEARCH EXPERIENCE

Carnegie Mellon University, Pittsburgh, PA, United States

Control for Nuclear Fusion

August 2018 - Present

My research efforts during my Ph.D. have all revolved around learning controls for tokamaks. In particular, I have worked on reinforcement learning, Bayesian optimization, and uncertainty quantification. A significant amount of my time has focused on using historical data and implementing controllers on a real physical device (DIII-D).

University of Colorado Boulder, Boulder, CO, United States

Stochastic Analysis of Minimal Automata

August 2016 - May 2018

For my master's thesis, I worked with Professor Manuel Lladser to analyze the growth rate of a particular class of minimal deterministic finite automaton. We derived a high probability bound on the number of states that grows polynomially.

WORK EXPERIENCE

Google, Software Engineering Intern

May 2017 - August 2017

- Integrated several components into simulation to evaluate Google's supply chain.
- Leveraged simulation framework to conduct several studies on how varying several quantities such as weeks of supply
 and lead time affect overall performance.

Terra Bella (Google), Software Engineering Intern

May 2016 - August 2016

- · Analyzed historical weather datasets in order to help predict the supply of satellite imagery that could be provided.
- Ingested a new dataset with over 54,000 images into Google Earth Engine for internal use.

Google, Software Engineering Intern

May 2015 - August 2015

- Created an interactive tutorial in order to teach users about AdWords' Conversion Tracking.
- Implemented an Android package name search service in Conversion Tracking.

SOFTWARE

Uncertainty Toolbox, https://uncertainty-toolbox.github.io/

2020

- · Open source python library for predictive uncertainty quantification, calibration, metrics, and visualizations.
- Currently has more than 1.5k stars on GitHub.

PUBLICATIONS

CONFERENCES AND JOURNALS

<u>Char, I.</u> & Schneider, J. "PID-Inspired Inductive Biases for Deep Reinforcement Learning in Partially Observable Control Tasks." In Advances in Neural Information Processing Systems, 2023.

<u>Char, I.</u>, Abbate, J., Bardóczi, L., Boyer, M., Chung, Y., Conlin, R., ... & Schneider, J. (2023, June). "Offline Model-Based Reinforcement Learning for Tokamak Control." In Learning for Dynamics and Control Conference (pp. 1357-1372). PMLR.

Li, X., Mehta, V., Kirschner, J., <u>Char, I.,</u> Neiswanger, W., Schneider, J., ... & Bogunovic, I. (2022). "Near-optimal Policy Identification in Active Reinforcement Learning." International Conference on Learning Representations, 2023.

Mehta, V., <u>Char, I.</u>, Abbate, J., Conlin, R., Boyer, M., Ermon, S., ... & Neiswanger, W. (2022). "Exploration via planning for information about the optimal trajectory." Advances in Neural Information Processing Systems, 35, 28761-28775.

Apostolopoulou, I., <u>Char, I.</u>, Rosenfeld, E. & Dubrawski, A. "Deep Attentive Variational Inferences." International Conference on Learning Representations, 2021.

Chung, Y., Neiswanger, W., <u>Char, I.</u> & Schneider, J. "Beyond Pinball Loss: Quantile Methods for Calibrated Uncertainty Quantification." In Advances in Neural Information Processing Systems, 2021.

Mehta V., <u>Char, I.</u>, Neiswanger, W., Chung, Y., Nelson, A. O., Boyer, M., Kolemen E. & Schneider, J. "Neural Dynamics Systems: Balancing Structure and Flexibility in Physical Prediction." IEEE Conference on Decision and Control, 2021.

<u>Char, I.</u>, Chung, Y., Neiswanger, W., Kandasamy, K., Nelson, A. O., Boyer, M., Kolemen, E. & Schneider, J. "Offline contextual bayesian optimization." In Advances in Neural Information Processing Systems, 2019.

<u>Char, I.,</u> & Lladser, M. E. "Stochastic Analysis of Minimal Automata Growth for Generalized Strings." Methodology and Computing in Applied Probability, 2019.

TECHNICAL REPORTS AND WORKSHOPS

Mehta, V., Abbate, J., Wang, A., Rothstein, A., <u>Char, I.</u>, Schneider, J., Kolemen E., Rea C. & Garneir, D. "Towards LLMs as Operational Copilots for Fusion Reactors." NeurIPS 2023 Workshop AI4Science.

Char, I.*, Chung, Y.*, Shah, R. & Schneider, J. "Correlated Trajectory Uncertainty for Adaptive Sequential Decision Making." NeurIPS 2023 Workshop on Adaptive Experimental Design and Active Learning in the Real World.

Igoe, C., Chung, Y., <u>Char, I.</u> & Schneider, J. "How Useful are Gradients for OOD Detection Really?" https://arxiv.org/abs/2205.10439

<u>Char, I.*</u>, Mehta, V.*, Villaflor, A., Dolan, J. & Schneider, J. "BATS: Best Action Trajectory Stitching." NeurIPS 2021 Offline Reinforcement Learning Workshop.

Chung, Y., Char, I., Guo H., Schneider, J. & Neiswanger, W. "Uncertainty Toolbox: an Open-Source Library for Assessing Visualizing and Improving Uncertainty Quantification." ICML 2021 Uncertainty and Robustness in Deep Learning Workshop.

Chung, Y., <u>Char, I.</u>, Neiswanger, W., Kandasamy, K., Nelson, A. O., Boyer, M., Kolemen, E. & Schneider, J. "Offline contextual bayesian optimization for nuclear fusion." NeurIPS 2019 Machine Learning and the Physical Sciences Workshop.

AWARDS Machine Learning Department Teaching Assistant of the Year

2021-2022

NSF Graduate Research Fellowship

2018 2018

Chancellor's AwardAwarded by the chancellor of the University of Colorado for highest GPA university-wide.

TEACHING 10-606/607: Mathematical/Computational Foundations for Machine Learning

Fall 2021

Teaching Assistant, Carnegie Mellon University

10-716: Advanced Machine Learning: Theory and Methods

Spring 2020

Teaching Assistant, Carnegie Mellon University

[Updated 2023-11-17]